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ABSTRACT

A Lax pair for the additive difference Painlevé equation of type E
(1)
7 is explicitly obtained

as certain linear difference equations of scalar form. The compatibility of the Lax pair is given
by using certain characterization of the coefficients in the Lax equation. Some Lax pairs for

types E
(1)
6 , D

(1)
4 , and A

(1)
3 are also given by the degeneration.

KEY WORDS:　 Lax pair, additive difference Painlevé equation, Padé method, Padé in-
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1 Introduction

The second order discrete Painlevé equations
were classified in [23] based on rational surfaces
connected to extended affine Weyl groups. There
exist three types of discrete Painlevé equations
in the classification: elliptic difference (e-), mul-
tiplicative difference (q-) and additive difference
(d-) types. For each difference type, the list of
types of affine Weyl groups arising as the sym-
metry of Bäcklund transformations are given as
Figure 1.

Here A → B means that B is obtained from A
by degeneration.

The main subject of this paper is the d-E
(1)
7

equation, namely the d-Painlevé equation of type

E
(1)
7 [6, 10, 25]. For variables (f, g) in P1×P1 and

parameters δ, ai, bi, (i = 1, 2, 3, 4) ∈ C× with a
constraint a1−a2−a3+a4+b1+b2−b3+b4+δ = 0,
define a shift operator T as

T :

(
a1, a2, a3, a4

b1, b2, b3, b4
, f, g

)
7→(

a1 − δ, a2 − δ, a3 − δ, a4 − δ

b1, b2, b3, b4
, f , g

)
.

(1)
Here for any object X the corresponding shifts

∗Department of Natural Science, National Institute of
Technology, Akashi College, Hyogo 674-8501, Japan

are denoted as X := T (X) and X := T−1(X).

Then the d-E
(1)
7 equation can be described by the

birational transformation T−1(g) = g(f, g) and

T (f) = f(f, g) in P1 × P1 as follows:

(f − g − v) (f − g − v − δ)

(f − g)(f − g)
=

A(f)

B(f)
, (2)

(f − g − v)(f − g − v + δ)

(f − g)(f − g)
=

A(g + v)

B(g)
, (3)

whereA(x) :=
∏4

i=1(x−ai), B(x) :=
∏4

i=1(x−bi),
v := a1 + a4 − b3.

Let us briefly recall a background on Lax pairs
of discrete Painlevé equations. The 2 × 2 matrix

Lax pairs for type q-D
(1)
5 in [9] was derived using

the connection preserving deformation of a 2 × 2
matrix system of q-difference equations. Some 2

× 2 matrix Lax pairs for types from d-D
(1)
4 to d-

A
(1)
1 were derived in [5], using a Schlesinger trans-

formation of differential equations. The 2 × 2

matrix Lax pairs for type q-E
(1)
6 in [24] was de-

rived, making use of a similar way as in[9]. Some
2 × 2 matrix Lax pairs were obtained utilizing
moduli spaces of difference connection on P1 in

[1] for types d-E
(1)
6 and d-D

(1)
4 . The 2 × 2 ma-

trix Lax pairs for types, from q-A
(1)
4 to q-A

(1)
1 , in

[24] were derived by utilizing a similar way as in
[9, 24]. Certain matrix Lax pairs were obtained as
certain Fuchsian system of differential equations
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in [2] for types d-E
(1)
8 , d-E

(1)
7 , and d-E

(1)
6 . In

[3, 4] the Lax pairs for types d-E
(1)
7 , d-E

(1)
6 , and

d-D
(1)
4 have been constructed as reductions from

so-called elementary Schlesinger transformations
of some Fuchsian systems by computing more ex-
plicitly than in [2]. Some scalar Lax pairs of dis-
crete Painlevé equations were given as linear dif-
ference equations, using a characterization in the

coordinates (f, g) ∈ P1×P1 for type e-E
(1)
8 in [27],

and types q-E
(1)
8 and q-E

(1)
7 in [28]. In [10], the

scalar Lax pairs for all the discrete Painlevé equa-
tions have recently been proposed by utilizing the
characterization in the coordinates (f, g).
This paper is organized as follows: In Section

2.1, the Lax pair for type d-E
(1)
7 is explicitly ob-

tained as certain linear difference equations of
scalar form. In Section 2.2, we show that the

d-E
(1)
7 equation (2) and (3) is the sufficient condi-

tion for the compatibility of the Lax pair by using
certain characterization in terms of x (see Section
2.2), which are related but different from the char-
acterization in the coordinates (f, g) (see Remark

2.2). In Section 3, the Lax pairs for types d-E
(1)
6 ,

d-D
(1)
4 and d-A

(1)
3 are obtained by the degener-

ation. In Section 4, the relation between Padé
interpolation problems and the results of this pa-
per are discussed shortly as Concluding remarks
4.

2 The Lax Pair for d-Painlevé
Equation of Type E

(1)
7

This section will consider the Lax pair for type

d-E
(1)
7 . In Section 2.1, we will give certain two

linear difference equations as the scalar Lax pair

for type d-E
(1)
7 and derive the d-E

(1)
7 equation.

Section 2.2 will prove that equations (2) and (3)
are sufficient conditions for the compatibility of
the linear equations.

2.1 Lax Equations

Let us consider two linear equations for an un-
known function y(x): L2(x) = 0 as the equation
between y(x), y(x + δ), y(x), and L3(x) = 0 as
the equation between y(x), y(x), y(x− δ), where
L2(x) and L3(x) are given as linear three-term
expressions

L2(x) := (x− f)y(x)− (x− g − v)y(x+ δ)
+ (x− g)y(x),

(4)
L3(x) := w(x− f − δ)y(x) +A(x)(x− g − δ)y(x)

−B(x− δ)(x− g − v)y(x− δ),
(5)

and f, g, f , w are some variables depending on
the parameters δ, ai, and bi but independent of
x. Then we have

ell.(e-) E
(1)
8
��

A
(1)
1,|α|2=8
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OOO
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8

//
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Figure 1: Degeneration diagram of affine Weyl group symmetries
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Proposition 2.1. The compatibility of the lin-
ear equations L2 = 0 (4) and L3 = 0 (5) gives
conditions (2) and (3).

Proof. Under the condition x = f , eliminating
y(x) and y(x + δ) from L2(x) = L3(x + δ) = 0
where

L3(x) = w(x− f − δ)y(x) +A(x− δ)(x− g − δ)y(x)

−B(x− δ)(x− g − v − 2δ)y(x− δ),
(6)

obtains equation (2). For x = g, eliminating y(x+
δ) and y(x) from L2(x) = L3(x+ δ) = 0, we have
the relation

w =
v(v − δ)B(g)

(f − g)(f − g)
. (7)

In the case of x = g+v, eliminating y(x) and y(x)
from L2(x) = L3(x) = 0, we have the relation

w =
v(v − δ)A(g + v)

(f − g − v)(f − g − v + δ)
. (8)

Hence, eliminating w from relations (7) and (8),
we obtain equation (3). □

Let us consider the three-term linear equation
for the unknown function y(x): L1(x) = 0 as the
equation between y(x + δ), y(x), y(x − δ). Elim-
inating y(x) and y(x − δ) from L2(x) = L2(x −
δ) = L3(x) = 0 (4), (5), one has the equation
L1(x) = 0, where L1(x) is given as a linear three-
term expression

L1(x) :=
A(x)

x− f
y(x+ δ) +

B(x− δ)

x− f − δ
y(x− δ)

− 1

x− g − v

[A(x)(x− g)

x− f
+

V (x− δ)

(x− f − δ)(x− g − δ)

]
×y(x),

(9)

V (x) := B(x)(x−g−v)(x−g−v+δ)−w(x−f)(x−f).
(10)

Eliminating f and w from the equation L1 = 0
(9) by using equation (3) and relation (7), the
expression L1 can be rewritten as

L1(x) =
A(x)

x− f

[
y(x+ δ)− x− g

x− g − v
y(x)

]
+

B(x− δ)

x− f − δ

[
y(x− δ)− x− g − v − δ

x− g − δ
y(x)

]
+v

[
B(g)

(f − g)(x− g − δ)
− A(g + v)

(f − g − v) (x− g − v)

]
×y(x).

(11)
The linear difference equations L1 = 0 (11) and
L2 = 0 (4) can be regarded as the Lax pair for

type d-E
(1)
7 , and in Section 2.2 it will be proved

that the d-E
(1)
7 equation (2), (3) is the sufficient

condition for the compatibility of L1 = 0 and
L2 = 0. The equation L1 = 0 is equivalent to
the scalar Lax equation in [10] by using a suit-
able gauge transformation of y(x). On the other
hand, a 4 × 4 matrix Lax pair was given as a
certain Fuchsian system of differential equations
in [2]. In [4] certain 4 × 4 matrix Lax pair has
been constructed as a reduction from two differ-
ent kinds of elementary Schlesinger transforma-
tions by computing more explicitly than in [2].

Remark 2.2. The linear equation (f − g)(f −
g − v)(x − f)(x − f − δ)L1(x) = 0 (11) has the
properties as a curve in P1 × P1 with respect to
the coordinates (f, g) ∈ P1 × P1 as follows:
(i) The expression (f − g)(f − g − v)(x− f)(x−
f − δ)L1(x) is a polynomial of bidegree (3, 2) in
(f, g).
(ii) As a polynomial, the expression (f−g)(f−g−
v)(x−f)(x−f−δ)L1 vanishes at the the following
12 points (fi, gi) ∈ P1 × P1 (i = 1, . . . , 12):

(bi, bi)
4
i=1, (ai, ai − v)4i=1, (x, x),

(x− δ, x− v − δ), (x, (x−v)y(x+δ)−xy(x)
y(x+δ)−y(x) ),

(x− δ, (x−v−δ)y(x)−(x−δ)y(x−δ)
y(x)−y(x−δ) ).

(12)

Conversely, the polynomial (f−g)(f−g−v)(x−
f)(x−f−δ)L1 is characterized by these properties
up to multiplicative constant.

We note that similar properties of the equation
L1 = 0 for the discrete Painlevé equations have
already been given in [10, 27, 28]. In Section 2.2,
we gives different properties of the coefficients of
y(x+ δ), y(x), and y(x− δ) in terms of x.
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2.2 Proof of the compatibility
condition of the Lax pair

In Section 2.1, we derived the d-E
(1)
7 equation

(2) and (3) as the necessary condition for the com-
patibility of the Lax pair (4) and (5) (or (4) and
(11)). In this subsection, we will prove that the

d-E
(1)
7 equation is the sufficient condition for the

compatibility of the Lax pair.

Lemma 2.3. The expression (x − f)(x − f −
δ)L1(x) (9) (or (11)) has the following proper-
ties:

(i) It is a three-term linear expression among
y(x+ δ), y(x), and y(x− δ), and the coefficients
of these terms are polynomials of degree 5 in x.

(ii) The coefficients of y(x+δ) (resp. y(x−δ))
has zero at x = a1,. . . ,a4 (resp. x = b1+δ,. . . ,b4+
δ).

(iii) Under the condition

y(x+ δ)

y(x)
= 1 +

v

x
+

v(v − δ)/2

x2
+

c

x3
+O

( 1

x4

)
,

y(x− δ)

y(x)
= 1− v

x
+

v(v − δ)/2

x2
− c

x3
+O

( 1

x4

)
,

(13)
the terms x5, . . . , x2 in the expression (x−f)(x−
f − δ)L1(x) vanish, namely (x − f)(x − f −
δ)L1(x) = O(x1) around x = ∞. Here c ∈ C
is an arbitrary constant.

(iv) The equation (x−f)(x−f − δ)L1 = 0 has
two apparent singularities x = f, f + δ (i.e., the
solutions are regular there), where

y(f + δ)

y(f)
=

f − g

f − g − v
for x = f, f + δ (14)

holds.
Conversely, the expression (x − f)(x − f −

δ)L1(x) is uniquely characterized by the proper-
ties (i)− (iv).

Proof. The property (i) is given by computation
using equations (7) and (8). Specifically, the ex-

pression V (x−δ)
x−g−δ in (9) reduces to a polynomial of

degree 5 in x under condition (7). Furthermore,
the coefficient of the term y(x) is given as a poly-
nomial of degree 5 in x using condition (8). The
property (ii) is trivial. The property (iii) can eas-
ily be confirmed by substituting condition (13)

into the equation (x − f)(x − f − δ)L1(x) = 0
(11) 1. The property (iv) follows by substituting
x = f, f + δ into the equation (x − f)(x − f −
δ)L1(x) = 0 (11). The converse can be easily be
confirmed by counting the number of free coeffi-
cients. □

We remark that two points x = f, f + δ are
apparent singularities in the sense that the equa-
tion (x − f)(x − f − δ)L1(x) = 0 is satisfied at
those two points by the same condition (in this
case (14)).

Eliminating y(x) and y(x + δ) from L2(x) =
L3(x) = L3(x + δ) = 0 in (4) and (5) result in
a three-term linear equation L∗

1(x) = 0 for y(x+
δ), y(x), and y(x− δ) where

L∗
1(x) :=

A(x)

x− f
y(x+ δ) +

B(x− δ)

x− f − δ
y(x− δ)

− 1

x− g − v

[A(x)(x− g − δ)

x− f − δ
+

V (x)

(x− f)(x− g)

]
×y(x).

(15)

The following Lemma (and its proof) is similar
to Lemma 2.3.

Lemma 2.4. The expression (x − f)(x − f −
δ)L∗

1(x) (15) has the following properties:
(i) It is a three-term linear expression for

y(x+ δ), y(x), and y(x− δ), and the coefficients
of these terms are polynomials of degree 5 in x.

(ii) The coefficients of y(x+δ) (resp. y(x−δ))
has zero at x = a1 − δ,. . . ,a4 − δ (resp. x =
b1 + δ,. . . ,b4 + δ).

(iii) Under the condition

1

(x− f)(x− f − δ)L1(x) = (x− f − δ)A(x)×[
1 +

v

x
+

v(v − δ)

x2
+

c

x
+O

( 1

x4

)
− x− g

x− g − v

]
y(x)

+(x− f)B(x− δ)×[
1− v

x
+

v(v − δ)/2

x2
− c

x3
+O

( 1

x4

)
− x− g − v − δ

x− g − δ

]
×y(x) + v(x− f)(x− f − δ)×[

B(g)

(f − g)(x− g − δ)
− A(g + v)

(f − g − v) (x− g − v)

]
y(x).

明石工業高等専門学校研究紀要 第 65号（令和 5年 2月）

- 36 -



y(x+ δ)

y(x)
= 1 +

v

x
+

v(v − δ)/2

x2
+

c

x3
+O

( 1

x4

)
,

y(x− δ)

y(x)
= 1− v

x
+

v(v − δ)/2

x2
− c

x3
+O

( 1

x4

)
,

(16)
the terms x5, . . . , x2 in the polynomial (x−f)(x−
f − δ)L1(x) vanish, namely (x − f)(x − f −
δ)L∗

1(x) = O(x1) around x = ∞. Here c ∈ C
is the same arbitrary constant as in (13).

(iv) The equation (x−f)(x−f − δ)L∗
1 = 0 has

two apparent singularities x = f, f + δ, where

y(f + δ)

y(f)
=

B(f)(f − g − v + δ)

A(f)(f − g)
for x = f, f+δ

(17)
holds.
Conversely, the expression (x − f)(x − f −

δ)L∗
1(x) is uniquely characterized by the proper-

ties (i)− (iv).

The following is the main result of this paper.

Theorem 2.5. The linear equations L1 = 0 (11)
and L2 = 0 (4) for the unknown function y(x) are

compatible if and only if the d-E
(1)
7 equation (2)

and (3) are satisfied.

Proof. The compatibility means that the shift
operator T changes the equation L1 = 0 into the
equation L∗

1 = 0, i.e., the commutativity of the
following:

L∗
1 = 0 (Lemma 2.4) ⇔ L∗

1 = 0 (15)
↑ ↑
T -shift (1) L2 = L3 = 0 (4), (5)
↑ ↓
L1 = 0 (Lemma 2.3) ⇔ L1 = 0 (9)

⇔ L1 = 0 (11).
This commutativity is almost clear from the

characterizations (i) and (ii) of the equation L1 =
0 (respectively L∗

1 = 0) in Lemma 2.3 (respec-
tively Lemma 2.4). The remaining task is to check
that the operator T changes expression (14) into
expression (17), utilizing the characterization (iii)
of the equation L1 = 0 (respectively L∗

1 = 0) and
equation (2). □

As the point of the proof, the following two are

applied to type d-E
(1)
7 together: The first is that

the equation L1(f, f, g) = 0 in terms of f , f , and
g is derived from the equations L2(f, g) = 0 and
L3(f, g) = 0 (see [10, 21, 27, 28]). The second is
that the equation L1(f, f, g) = 0 is characterized
as a polynomial in terms of x (see [19]).

3 Degenerations

In this section, we will consider degeneration

limits from type d-E
(1)
7 to types d-E

(1)
6 , d-D

(1)
4

and d-A
(1)
3 .

3.1 Degeneration from type d-E
(1)
7 to

type d-E
(1)
6

Degeneration from type d-E
(1)
7 to type d-E

(1)
6 is

obtained by setting a transformation

a4 →
−1

ε
,

a3 →
−1

ε
+ a1 − a2 + b1 + b2 − b3 + b4 + δ,

y(x+ δ)

y(x)
→ εy(x+ δ)

y(x)
,

(18)
and taking the limit ε → 0.
The time evolution is given by a shift operator

T : (a1, a2, b1, b2, b3, b4, f, g)

7→ (a1 − δ, a2 − δ, b1, b2, b3, b4, f , g).
(19)

The d-Painlevé E
(1)
6 equation [10, 22, 25] is

equivalent to a birational transformation

(f − g)(f − g) =
B(f)

(f − a1)(f − a2)
,

(f − g)(f − g) =
B(g)

(g + u1)(g + u2)
,

(20)

where B(x) :=
∏4

i=1(x− bi), u1 := a2 − b1 − b2 −
b4 − δ, and u2 := a1 − b3. The Lax pair is given
as two linear difference equations
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L1(x) :=
(x− a1)(x− a2)

x− f
[y(x+ δ)− (x− g)y(x)]

+
B(x)

x− f − δ

[
y(x− δ)− y(x)

x− g − δ

]
+

[
(g + u1)(g + u2)−

B(x)

(f − g)(x− g − δ)

]
×y(x) = 0,

L2(x) := (x− f)y(x)− y(x+ δ) + (x− g)y(x) = 0.
(21)

The equation L1 = 0 (21) is equivalent to the
scalar Lax equation in [10] by using suitable gauge
transformation of y(x). We remark that a 2 ×
2 matrix Lax pair was obtained utilizing moduli
space of difference connection in [1], and a 3 × 3
matrix Lax pair was given as the Fuchsian sys-
tem of differential equations in [2]. In [3, 4] cer-
tain 3 × 3 matrix Lax pair has been constructed
as a reduction from elementary Schlesinger trans-
formations by computing more explicitly than in
[2].

3.2 Degeneration from type d-E
(1)
6 to

type d-D
(1)
4

Degeneration from type d-E
(1)
6 to type d-D

(1)
4 is

obtained by setting a transformation

b3 → −1

ε
, b4 → − 1

εt
, g → − 1

gε
,

y(x+ δ)

y(x)
→ y(x+ δ)

εy(x)
,
y(x)

y(x)
→ y(x)

εy(x)
,

(22)

and taking the limit ε → 0.
The time evolution is given by a shift operator

T : (a1, a2, b1, b2, t, f, g)

7→ (a1 − δ, a2 − δ, b1, b2, t, f , g).
(23)

The d-D
(1)
4 equation [5, 10, 22, 25] is equivalent

to a birational transformation

gg =
t(f − a1)(f − a2)

(f − b1)(f − b2)
,

f + f − b1 − b2 +
a1

g − 1
+

tu

g − t
= 0,

(24)

where u := a2− b1− b2− δ. The Lax pair is given
as two linear difference equations

L1(x) :=
t(x− a1)(x− a2)

x− f

[
y(x+ δ)− y(x)

g

]
+
(x− b1 − δ)(x− b2 − δ)

x− f − δ
[y(x− δ)− gy(x)]

+(g − 1)(g − t)

[
a1

g − 1
+

x+ f − a1 − a2
g

+
u

g − t

]
×y(x) = 0,

L2(x) := (x− f)y(x)− y(x+ δ) +
y(x)

g
= 0.

(25)
The equation L1 = 0 (25) is equivalent to the
scalar Lax equation in [10] by using suitable gauge
transformation of y(x). We remark that a 2 × 2
matrix Lax pair for type d-PV was obtained by
utilizing a Schlesinger transformation of a differ-
ential equation in [5] and a 2 × 2 matrix Lax pair
was obtained utilizing moduli space of difference
connection in [1]. In [3] certain 2× 2 matrix Lax
pair has been constructed as a reduction from el-
ementary Schlesinger transformations by explicit
computation.

3.3 Degeneration from type d-D
(1)
4 to

type d-A
(1)
3

Degeneration from type d-D
(1)
4 to type d-A

(1)
3 is

obtained by setting a transformation

a2 → −1

ε
, t → εt, (26)

and taking the limit ε → 0.
The time evolution is given by a shift operator

T : (a1, b1, b2, t, f, g) 7→ (a1 − δ, b1, b2, t, f , g).
(27)

The d-A
(1)
3 equation [5, 10, 22, 25] is equivalent

to a birational transformation

gg =
t(f − a1)

(f − b1)(f − b2)
,

f + f − b1 − b2 −
t

g
+

a1
g − 1

= 0.

(28)

The Lax pair is given as two linear difference
equations
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L1(x) :=
t(x− a1)

x− f

[
y(x+ δ)− y(x)

g

]
+
(x− b1 − δ)(x− b2 − δ)

x− f − δ
[y(x− δ)− gy(x)]

+(g − 1)

[
x+ f − b1 − b2 − δ − t

g
+

a1
g − 1

]
×y(x) = 0,

L2(x) := (x− f)y(x)− y(x+ δ) +
y(x)

g
= 0.

(29)
The equation L1 = 0 (29) is equivalent to the
scalar Lax equation in [10] by using suitable gauge
transformation of y(x). We remark that a 2 × 2
matrix Lax pair for type d-PIV was obtained by
using a Schlesinger transformation of a differential
equation in [5].

4 Concluding remarks

As mentioned in Section 1, the results of this
paper were obtained making use of Padé interpo-
lation problems. We will discuss the relation with
Padé problem and the results shortly.
There exists a simple method to study the

Painlevé/Garnier equations by using Padé ap-
proximation [26]. In this method, one can obtain
the evolution equation, the Lax pair and some
special solutions simultaneously, starting from a
suitable Padé approximation (or interpolation)
problem. Concretely, for a suitable given func-
tion Y (x), we look for polynomials Pm(x) and
Qn(x) of degree m and n ∈ Z≥0, satisfying the
approximation condition:

Y (x) ≡ Pm(x)

Qn(x)
(mod xm+n+1), (30)

or the interpolation condition:

Y (xs) =
Pm(xs)

Qn(xs)
(s = 0, . . . ,m+ n). (31)

Define certain shift operator T (e.g.(1)) and con-
sider two three-term linear relations satisfied by
the function y(x) = Pm(x), Y (x)Qn(x), such as
the equations L2(x) = L3(x) = 0 (e.g.(4), (5)).
The compatibility of the linear relations gives

Painlevé equation (e.g.(2), (3)). Moreover spe-
cial solutions of the Painlevé equation can be ob-
tained from the polynomials Pm(x) and Qn(x) of
the Padé condition (30) (or (31)). We call the
method mentioned above “Padé method”. The
Padé method based on (30) and (31) have been
applied in [7, 16, 19, 26, 20] and [7, 15, 17, 18, 19,
21, 29, 30, 20] respectively. For the works related
to Padé approximation, see [8, 11, 12, 13].

Recently the results of this paper have been ob-
tained in [17] by the Padé interpolation problems
(31) on the additive (δ-) grid xs = sδ. The inter-
polated sequences Ys := Y (xs) can be chosen as
follows:

d-E
(1)
7 d-E

(1)
6 d-D

(1)
4 d-A

(1)
3

Ys

3∏
i=1

( biδ )s

(aiδ )s

2∏
i=1

( biδ )s

(aiδ )s
cs
( b1δ )s

(a1δ )s
ds( b1δ )s

(32)
Here ai, bi, c, d ∈ C× are parameters, and a1+a2+
a3− b1− b2− b3− δ(m−n) = 0 is a constraint for

the parameters in type d-E
(1)
7 , and Pochhammer’s

symbol is defined by
(a1, a2, · · · , ai)j :=∏j−1

k=0(a1 + k)(a2 + k) · · · (ai + k).
(33)
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the q-Painlevé VI equation, J.Phys. A. Math.
Gen., 31 (1998), 3545–3558.

[6] Grammaticos B. and Ramani A., On a novel
q-discrete analogue of the Painlevé VI equa-
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(2009), 042 (15pp).

[28] Yamada Y., Lax formalism for q-Painlevé
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